organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

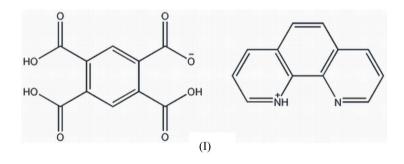
Ping Li, Xiao-Yong Tang, Rong-Hua Zeng and Shan-Tang Yue*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China

Correspondence e-mail: yuesht@scnu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.003 Å R factor = 0.038 wR factor = 0.104 Data-to-parameter ratio = 10.8


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,10-Phenanthrolinium 2,4,5-tricarboxybenzoate

The title complex, $C_{12}H_9N_2^+ \cdot C_{10}H_5O_8^-$ or $(Hphen)^+(H_3btc)^ [H_4btc = benzene-1,2,4,5-tetracarboxylic acid and phen = 1,10$ $phenanthroline(<math>C_{12}H_8N_2$)], has been synthesized under hydrothermal conditions. The compound is composed of extended sheets of $[H_3btc]^-$ anions interleaved by stacks of planar [Hphen]⁺ cations.

Comment

The coordination chemistry of aromatic polycarboxylic acids coordinated to lanthanide metal cations has been extensively investigated (Wang *et al.*, 1999; Chui *et al.*, 2001; Wang *et al.*, 2003; Zheng *et al.*, 2005). However, complexes which incorporate 1,2,4,5-benzenetetracarboxylic acid (H₄btc) and polycyclic heterocyclic ligands containing N atoms are limited (Wu *et al.*, 2002; Hu *et al.*, 2004; Wang *et al.*, 2005). In this study, we expected to obtain a complex composed of europium, H₄btc and 1,10-phenanthroline (phen) by a hydrothermal reaction. Instead, we obtained crystals of the salt [Hphen]⁺[H₃btc]⁻, (I), which exhibits fluorescent emission at 384, 405 and 423 nm in ethanol solution.

The structure of (I) is shown in Fig. 1. As in the reported hydrated complex (Arora & Pedireddi, 2003), the asymmetric unit of (I) contains one deprotonated H_4btc^- anion and one protonated phenH⁺ cation. Within this ensemble, the anions are linked by O-H···O hydrogen bonds (Table 1) to form extended sheets (Fig. 2). The phenH⁺ cations are arrayed on both sides of the extended sheets, forming N-H···O hydrogen bonds with the carboxylate anions (Table 1).

Experimental

A mixture of EuCl₃· $6H_2O$ (0.183 g, 0.5 mmol), H₄btc (0.127 g, 0.5 mmol), phen (0.198 g, 1 mmol) and water (3 ml) was sealed in a 23 ml Teflon reactor, heated at 363 K for 6 d and slowly cooled to room temperature. Colorless crystals were obtained after washing with water and ethanol and drying in vacuum. Analysis found: C 61.03, H 3.21, N 6.62%; calculated: C 60.84, H 3.25, N 6.45%. Melting

© 2007 International Union of Crystallography All rights reserved Received 27 November 2006 Accepted 14 December 2006 range: 462.2–472.4 K. TGA studies showed the crystals to be stable up to 463 K. The decomposition of ligands was complete by 585 K.

V = 931.1 (3) Å³

 $D_x = 1.549 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.12 \text{ mm}^{-1}$

T = 273 (2) K

 $R_{\rm int} = 0.014$

 $\theta_{\rm max} = 25.2^\circ$

Block, colorless

 $0.30 \times 0.25 \times 0.20 \ \text{mm}$

7468 measured reflections

3309 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0546P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.3152P]

 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$

2987 reflections with $I > 2\sigma(I)$

Z = 2

Crystal data

 $\begin{array}{l} C_{12}H_9N_2^{+}\cdot C_{10}H_5O_8^{-} \\ M_r = 434.35 \\ \text{Triclinic, } P\overline{1} \\ a = 9.4309 \ (18) \ \text{\AA} \\ b = 9.6032 \ (19) \ \text{\AA} \\ c = 11.710 \ (2) \ \text{\AA} \\ \alpha = 69.963 \ (2)^{\circ} \\ \beta = 83.866 \ (2)^{\circ} \\ \gamma = 69.171 \ (2)^{\circ} \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.965, T_{\rm max} = 0.976$

Refinement

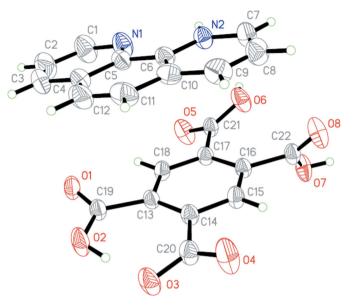
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.104$ S = 1.053309 reflections 307 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

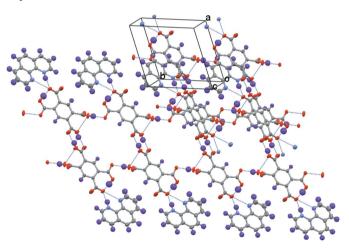
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2O···O3	0.917 (17)	1.489 (17)	2.4053 (16)	176 (3)
N2−H1N···O3 ⁱ	0.95 (2)	1.77 (2)	2.6973 (16)	164.9 (19)
$O7-H7A\cdots O1^{ii}$	0.82	1.82	2.6308 (15)	171
$O7-H7A\cdots O2^{ii}$	0.82	2.67	3.2680 (17)	131
O6−H6···O5 ⁱⁱⁱ	0.82	1.82	2.6225 (15)	166

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) -x, -y + 1, -z + 1.


H atoms on O2 and N6 were located in a difference Fourier map and were refined isotropically. Other H atoms were placed in calculated positions (C-H = 0.93 Å and O-H = 0.82 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge South China Normal University for supporting this work.


References

Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177-9185.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Figure 2

The packing of (I); dashed lines show the intermolecular hydrogen bonds.

- Bruker (1998). *SMART* (Version 5.0) and *SHELXTL* (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chui, S. S. Y., Siu, A., Feng, X., Zhang, Z. Y., Mak, T. C. W. & Williams, I. D. (2001). Inorg. Chem. Commun. 4, 467–470.
- Hu, M. L., Zhu, N. W., Li, X. H. & Chen, F. (2004). Cryst. Res. Technol. 39, 505– 510
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, Y. B., Zheng, X. J., Zhuang, W. J. & Jin, L. P. (2003). Eur. J. Inorg. Chem. pp. 1355–1360.
- Wang, Y. B., Zhuang, W. J., Jin, L. P. & Lu, S. Z. (2005). J. Mol. Struct. 737, 165– 172.
- Wang, Z. M., van de Burgt, L. J. & Choppin, G. R. (1999). Inorg. Chim. Acta, 293, 167–177.
- Wu, C. D., Lu, C. Z., Yang, W. B., Lu, S. F., Zhuang, H. H. & Huang, J. S. (2002). *Eur. J. Inorg. Chem.* pp. 797–800.
- Zheng, X. J., Jin, L. P., Gao, S. & Lu, S. Z. (2005). New J. Chem. 29, 798-804.